
Generierung von Saalplanbildern
mithilfe von Clustering und
Algorithmen zur Erstellung

konkaver Hüllen

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Maximilian Deutsch
Matrikelnummer 1327587

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Hsiang-Yun Wu

Wien, 21. Oktober 2018
Maximilian Deutsch Hsiang-Yun Wu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Generating seating plan images
using clustering and concave hull

algorithms

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Maximilian Deutsch
Registration Number 1327587

to the Faculty of Informatics

at the TU Wien

Advisor: Hsiang-Yun Wu

Vienna, 21st October, 2018
Maximilian Deutsch Hsiang-Yun Wu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Maximilian Deutsch
Ameisgasse 52

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 21. Oktober 2018
Maximilian Deutsch

v





Kurzfassung

Diese Studie präsentiert ein Verfahren zur Generierung von Saalplänen der Ticket Gretchen
app. Die App bietet die Möglichkeit Tickets für Theater und ähnliche Veranstaltungen
mithilfe eines interaktiven Saalplanes zu kaufen. Ein Saalplanbild ist eine abstrakte
Visualisierung eines Veranstaltungsortes die auf dessen Sitzanordnung basiert. Das Bild
soll einen Eindruck der räumlichen Struktur geben, um zu erkennen welche Sitze sich in
Reichweite voneinander befinden. Die vorgeschlagene automatisierte Lösung der Generie-
rung dieser Bilder ersetzt den zuvor verwendeten Prozess, die Saalplanbilder manuell zu
erstellen. Das Bild besteht aus Polygonen, die Sitzgruppen darstellen, die dem Benutzer
zeigen, welche Sitze nahe beieinander liegen und welche voneinander getrennt sind. Die
Gruppierung der Sitze ist durch den DBSCAN Clustering Algorithmus mit der Vewen-
dung der 2D Position, Sektor- und Logeninformation realisiert. Für die Berechnung der
Polygone werden zwei Algorithmen zur Erstellung von konkaven Hüllen verglichen.

vii





Abstract

This study presents a process of generating seating plan images for the Ticket Gretchen
app. The app offers the ability to buy tickets for theaters and similar venues by using
an interactive seating plan. A seating plan image is a venue’s abstract visualization
defined by the seating layout of a performance. It should give an impression of the spatial
structure to see which seats are in reach of each other. The proposed automated solution
of generating these images replaces the previously used process of creating the seating
plan images manually. The image is made up of polygons representing seat groups that
show the user which seats are near each other and which are separated from each other.
The grouping of seats is done with the DBSCAN clustering algorithm using the seats’ 2D
position, sector and box information. For the computation of the polygons two concave
hull algorithms are compared.

ix





Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Related Work 5
2.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Polygon computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Seating Plan Image Creation 7
3.1 User input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Seat data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Creating seat groups with clustering . . . . . . . . . . . . . . . . . . . 10
3.4 Computing polygons that represent seat groups and the stage . . . . . 12

4 Implementation 19
4.1 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Seat data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Polygon computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Results and Discussion 23
5.1 Tuning the distance threshold Eps for clustering . . . . . . . . . . . . 23
5.2 Tuning smoothness parameter of polygons . . . . . . . . . . . . . . . . 23
5.3 Comparison to manually created images . . . . . . . . . . . . . . . . . 24
5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusion and Future Work 35

List of Figures 37

Bibliography 39

xi





CHAPTER 1
Introduction

This project presents a process of creating seating plan images for theater plays and
similar events. When buying tickets for such an event it is advantageous to have a
visual representation of the venue to know where your seat is going to be located. This
visualization should give the visitor enough information about the venue’s structure to
make a decision where they wanted to be seated. Therefore the seating plan is a crucial
part of buying tickets for an event.

Ticket Gretchen[tic] is an app to buy tickets for events where users can select their seats
with an interactive seating plan shown in Figure 1.1. The seating plan shows available
seats for an event at a a specific time, which will be referred to as a performance. The
location an event takes place is called a venue. The colored dots represent the seats the
user can book with the color representing the price category. The small grey crosses
display unavailable seats. All seats are placed on white shapes forming a so called seat
group. Seat groups represent a collection of seats that should be visually combined, to
depict which seats are in reach of each other. For example in a theater you can find
boxes that are spatially divided from each other. In Figure 1.1 the horseshoe shaped
seats around the center of the image are individual boxes, each represented by a white
shape. The stage can be found at the bottom of the image displayed as a rectangle. The
seating plan image only consists of the seat groups and the stage. The seats are drawn
on top of the image by the app.

Each venue, event and even performance can have a different seating plan. For example
there is a standard seat layout for a venue, for which a seating plan image is required.
Some events may change the seat arrangement by omitting sections, whereby an own
image needs to be created. Also this is possible for a specific performance of an event.
Additionally when new venues and events are included in the app, new seating plan
images have to be created. For Ticket Gretchen there is an ongoing need of new seating
plan images.

1



1. Introduction

Up until now the seating plan images were created manually. For this, the seats for a
performance are rendered onto a blank image using the seats’ X- and Y-positions. This
image is then opened in a vector drawing program to draw the seat group polygons. The
decision which seats should be grouped is based on experience and knowledge of the
venue. For example, the creator looks up a photograph of the place in order to know
that some seats form a box and therefore will be grouped together. After all seats are
contained in a shape the stage is drawn at its appropriate location and the seats are
removed. This is a very cumbersome process that takes a lot of time.

The goal is to simplify the process of creating new seating plan images. This is done
by having an automated solution which is fully integrated into the current system. The
generated seating plan images should represent the seating layout as good as possible.
The seats should be grouped based on their location and any other available information
that separates them from another. Each seat needs to be included in a seating group and
no seat groups should overlap each other. The stage should be placed at an appropriate
location, which the user can change afterwards.

The developed solution manages to generate similar seating plan images compared to
the manual created ones. Creating seating plan images is now simpler, because the user
only needs to specify some parameters from which the image is automatically generated.
This reduces the time it takes to introduce new venues to the app. The method creates
seat groups by clustering the seats based on position, sector and box information using
DBSCAN[EKS+96]. Subsequently polygons for the seat groups are computed using
a concave hull algorithm. For this two methods have been compared. The stage is
positioned automatically, but can be modified in the user interface.

First related work will be discussed in chapter 2. In chapter 3 the proposed method of
generating seating plan images is presented. Any implementation details and the user
interface are explained in chapter 4. The solution is evaluated in chapter 5 where different
results are presented and limitations discussed. Finally in chapter 6 a conclusion of the
project is given and potential improvements are discussed.

2



Figure 1.1: On the left side is the app’s interactive seating plan where available seats
are drawn on top of the manually created seating plan image. On the right side the
corresponding generated seating plan image can be seen.

3





CHAPTER 2
Related Work

The task of this thesis is very specific and no comparing products can be found that
offer the required functionality. The following software solutions for seating plans in the
ticketing domain have been found:

The product seats.io [seab] offers the ability to create and embed interactive floor plans
to sell tickets. Their solution allows one to build a seating plan manually with an editor.
It is then accessed via an API and embedded with JavaScript. With the editor it is not
possible to automatically generate a seating plan from some input data.

Social Tables [soc] is an event management software to organize event sales collaboratively.
It includes the product to create diagrams and seating charts manually with the ability
to convert them to 3D representations. But there is no option to create an image
automatically from existing seating data.

With the ticketing solution SeatAdvisor [seaa] it is possible to create so called SeatMaps
for venues. Again it is not possible to generate seating plan images automatically, but
only manually.

The patent application from Stanley H. Kim [Kim14] describes a system for generating a
venue’s seating chart dynamically. To do so the user may input photos or drawings of the
location, which then are used with object recognition software to identify individual seats.
Alternatively the user may provide the venue’s dimensional information by inputting the
number of rows and seats for each section. The patent only describes the system in an
abstract way and does not provide any details for a possible implementation.

2.1 Clustering
Clustering is grouping objects together so that elements within a cluster are more similar
to another than to ones in different clusters. It is exploring data with no or little

5



2. Related Work

information in advance. Clustering is a well known field of study with approaches suitable
for different applications.

One of the most popular clustering algorithms[XW09] is the k-means algorithm[M+67].
It partitions a data set iteratively into k clusters by assigning the points to their nearest
cluster. The number of clusters and their initial centers need to be determined beforehand.
For a seating plan image the number of seat groups is not known in advance. Also the
clusters of the k-means algorithm tend to form circular shapes which is not desired for
the seating plan image.

Hierarchical clustering techniques create a hierarchy of results with different levels of
proximity. Agglomerative hierarchical clustering[MC12] iteratively merges elements based
on their similarity. Each merging step produces a clustering result from which a desired
one is selected using a similarity threshold. Because the algorithm has a computation
complexity of O(n2) and there is no need for the hierarchical structure, it was decided
not to use this technique.

2.2 Polygon computation
The clustered seat groups need to be represented as polygons. These polygons can be
created using the Graham Scan[Jar73] which calculates the convex hull of a set of points.
However in this project the seat groups need to be represented as concave shapes.

The k-nearest neighbours approach for concave hulls[MS07] sequentially creates the
boundary of a set of points. Going from a starting point the algorithm selects the next
best point from its k nearest neighbours by looking at the angles the edges will create.
Simply put the algorithm tries to make the largest right-hand turn compared to the
previous edge. The value k is an input parameter and controls the smoothness of the
polygon. Duckham’s concave hull algorithm[DKWG08] used in this thesis also uses
an input parameter controlling the smoothness. This algorithm was used because of
computation complexity of O(nlogn) is better than the k-nearest neighbours approach
with computation complexity of O(n3).

6



CHAPTER 3
Seating Plan Image Creation

The developed process for creating seating plan images can be examined in Figure 3.1.
It includes actions that are performed by the user (input of data) and actions that
are performed automatically (image generation itself). The creation of a seating plan
image is based on the seating information of a single performance. A performance is an
event at a concrete time which determines the layout of the seats. Additionally the user
inputs the parameter values that are needed for the subsequent steps and initiates the
automatic procedure. First the seating data for the selected performance is retrieved
from an external system. The seats are then clustered into seat groups that represent
a unit of seats which are visually combined. Next polygons are created for these seat
groups and an appropriate position of the stage is calculated. Finally the SVG image
is created from the polygons including the stage. The image is then displayed to the
user who decides if they are satisfied with the result. If not, the automatic process is
redone with different parameters. If the image is satisfying it is then possible to manually
manipulate the stage, concluding the seating plan image creation.

3.1 User input

First the user needs to specify the performance for which the seating plan image is created
for. This is done by searching for an event and selecting a performance on a specific date.
The performance is important, because it defines the layout of the seats. It would be
possible that an event has different seat layouts at different times. Also offsets can be
specified to shift the seats’ positions. Additionally the user inputs the parameter for the
clustering, polygon creation and stage calculation.

7



3. Seating Plan Image Creation

Figure 3.1: Flowchart of the process for creating a seating plan image.

3.2 Seat data

All the data regarding a performance including the seats is retrieved from external sources.
Figure 3.2 displays the data of a single seat and a visualization for each attribute. The
attribute seatId identifies a single seat distinctively. row is the name for a group of seats
typically aligned in a row. seatNumber identifies a seat within a row. sectorId identifies
a group of seats that usually consists of one ore more rows. ticketCategoryId identifies
seats in the same ticket category which determines the ticket’s price. posX and posY
make up the 2D coordinates of a seat.

8



3.2. Seat data

The 2D positions of the seats don’t originate from a top down view of the venue. They
are projected in a way that no seats would overlap. Seats on different floors that are
right above each other were shifted in a way that the overall structure is still recognized.

Feature Name Data Type Example
seatId String 511636_1_5
row String Proszeniumsloge links 1
seatNumber String 1
sectorId Number 4572
ticketCategoryId Number 26985
posX Number 729.81
posY Number 1168.29
((a)) A seat’s features with their data types and examples.

((b)) seatNumber ((c)) row

((d)) ticketCategory ((e)) sector

Figure 3.2: Subfigure 3.2(b) shows the seat’s actual value. Subfigures 3.2(c), 3.2(d) and
3.2(b) show the values mapped to sequential numbers. The color shows seats with the
same value.

Boxes are important for the resulting image because they are often separated by walls
from other seats. Therefore seats in the same box must be in the same seat group.

9



3. Seating Plan Image Creation

The box information is not directly within the data, but can be derived from the row
information. For example two seats in the same box have the following row value:

"Loge 8 links 1. Reihe"
"Loge 8 links 2. Reihe"

They belong to the box with the name "Loge 8 links". What is also included is the
number of the row within the box which has to be removed first. Assuming the row
number is present in a numerical way the row string is cut off before the last number
leaving the name of the box. This string can now be used to identify boxes.

3.3 Creating seat groups with clustering
For creating seat groups the clustering algorithm DBSCAN [EKS+96] is used. It is a
density based approach and allows the creation of clusters of arbitrary shape with no
prior knowledge of the number of clusters. DBSCAN examines the Eps-Neighbourhood
NEps(p) of a point p defined in Equation (3.1). It uses a distance function d(p, q) between
two points p and q from a Database D.

NEps(p) =
{
q ∈ D| d(p, q) ≤ Eps

}
(3.1)

The algorithm distinguishes core and border points which both belong to a cluster. Core
points have at least MinPts points in their Eps-Neighbourhood: |NEps(p)| ≥ MinPts.
Border points don’t have enough neighbours, but are contained in the neighbourhood of
core points. All other points are considered as noise. As every seat needs to belong to a
seat group MinPts will always be set to 0. Consequently clusters containing only one
seat are possible. Eps is an input parameter that is chosen by the user.

3.3.1 Testing seat attributes for clustering

Figures 3.3, 3.4 and 3.5 show clustering attempts that use the seat number, row and
ticket category information. Each color corresponds to a unique attribute value. The
figures on the left show the clustering results using only the respective attribute, whereas
the right figures show the combination with the position attribute. It can be observed
that using the attributes on their own don’t produce good results, because their values
appear at many locations. Therefore the position is needed so that a cluster does not
span across the whole image. Row and seat number create too many clusters. The
ticket category combined with the position gives the most promising result shown in
Figure 3.5(b). However this is also found to be unsuitable because it separates seats
which are not spatially divided.

3.3.2 Final distance measurement

For the final distance measure the position, sector and box information is used to
determine the distance between seats. The function is notated in Equation (3.2). The

10



3.3. Creating seat groups with clustering

((a)) seatNumber ((b)) seatNumber and position

Figure 3.3: Using seatNumber for clustering

((a)) row ((b)) row and position

Figure 3.4: Using row for clustering

ordering of the cases determine its evaluation. The box information is most important.
If two seats are in the same box they must definitely end up in the same seat group
and therefore get assigned a distance of 0. If only one is in a box or they belong to
different boxes they must be separated and therefore the greatest distance possible is
assigned. In some cases it is found that clustering sectors together produce good results.
Therefore the user has the option to try to group seats based on sectors. In any other
cases the proximity between two seats is defined by the euclidean distance. In Figure 3.6
a clustering result using the position only can be seen. Results using different Eps values

11



3. Seating Plan Image Creation

((a)) ticketCategoryId ((b)) ticketCategoryId and position

Figure 3.5: Using ticketCategoryId for clustering

can be found in section 5.1.

d(p, q) =


0, if boxp = boxq

∞, if ∃boxp Y ∃boxq ∨ boxp 6= boxq

0, if sectorp = sectorq (optional)√
(xq − xp)2 + (yq − yp)2 otherwise

(3.2)

3.4 Computing polygons that represent seat groups and
the stage

After creating the seat groups it is now necessary to compute polygons that represent
them as good as possible. A group of points could be represented by a well defined unique
convex hull, but such a shape may not represent them in the best way possible. Taking a
group of points in a "U" shape as an example: The resulting convex shape would more
look like an "O" and would not describe the group sufficiently. Therefore it is necessary
to use a concave hull, also known as alpha shape, characteristic shape or chi shape as
described in [DKWG08]. The problem with finding a concave hull is that there is not
one unique solution. A group of points can be described by multiple concave hulls. Two
approaches will be compared in the next sections.

3.4.1 Duckham’s concave hull algorithm

The first approach for the polygon creation is based on Duckham’s algorithm[DKWG08].
It has one input parameter l which controls the smoothness of the resulting polygon.

12



3.4. Computing polygons that represent seat groups and the stage

Figure 3.6: Clustering result into seat groups using the seats’ position. The number
correspond to the seat group’s id.

First a Delaunay triangulation of the points is generated. Then the longest boundary
edge is removed if it is longer than l and the resulting exterior edges would still form a
simple polygon. This is repeated as long as there are edges left to be removed.

The algorithm works on oriented combinatorial maps which is a data structure representing
graphs. Such a map is defined by so called darts, pairs of darts which form an edge
and darts which represent a vertex. Edges and vertices are defined in cyclic notation.
Figure 3.7 illustrates a combinatorial map. For example the darts (2, 3) form an edge.
The darts (3, 4, 5, 6, 7) form a vertex and are ordered in a anticlockwise manner.

To determine if an edge belongs to the boundary the algorithm checks for a property
that is only true for darts of interior edges. Simply explained the algorithm turns from
the dart to the left and then to the opposite, repeating this 2 times. If the starting dart
has been reached again there must be a triangle to the dart’s left. If this is true for both
darts the edge they form can only lie inside the graph, concluding which edges belong to
the boundary.

An edge will only be removed if the resulting boundary still forms a simple polygon. This
is true if the vertex lying on the opposite of the edge belongs to the interior. If it is an
boundary vertex a simple polygon cannot be formed anymore.

When seat groups are arranged in a line they cannot be represented as simple polygons.

13



3. Seating Plan Image Creation

Figure 3.7: A visualization of a combinatorial map with the arrows representing the
darts, from [DKWG08]

As this concave hull algorithm does not support such shapes, the point set is checked
in advance. A simple algorithm calculates the slopes between consecutive points and
compares them to another. If the differences are smaller than a margin the point set is
considered a straight line. Then the two extreme points either in X or Y direction are
used to form the path representing this line of seats.

3.4.2 ConcaveCube’s concave hull algorithm

The second approach for the polygon computation is based on the concave hull con-
struction method from ConcaveCubes[LCB+18]. The algorithm works on a clustered
point set where each point is assigned a cluster. First a Delaunay Triangulation for the
entire point set is generated. Then all edges which connect points of different clusters
are deleted, followed by deleting all inner edges. Inner edges are the ones that appear
twice in the triangulation result. Figure 3.8 visualizes the Delaunay Triangulation. The
original algorithm is designed to only generate Jordan boundaries which are paths where
each node has a degree of 2. After an edge deletion it can happen that some edges are
exposed which leads to a non-Jordan boundary. If this is the case the algorithm removes
and adds new edges so the property is ensured. In the case of seating plans non-Jordan
boundaries are desirable. For example a line of seats should be represented as a single
path instead of a polygon which can be examined in Figure 3.10. The slightly curved
paths in the right image that appear on both sides represent a line of seats. The left
image visualizes them as polygons, whereas the right image uses open paths. For the

14



3.4. Computing polygons that represent seat groups and the stage

seating plan image a path representation for a line of seats is preferred.

Figure 3.8: The Delaunay Triangulation of ConcaveCube’s concave hull algorithm. Edges
connecting different clusters are shown in red, inner edges are blue and boundary edges
are black.

3.4.3 Comparison between the concave hull algorithms

Figures 3.9, 3.10, 3.11 and 3.12 compares the two concave hull methods side by side.
Results of Duckham’s algorithm are presented on the left side and results of ConcaveCube’s
algorithm are shown on the right side of each Figure. Both methods operate on the
same clustering results. The first thing that comes to notice is the difference in polygon
smoothness the algorithms produce. Duckhams’s algorithm uses a smoothness input
parameter to control the polygons’ shapes. ConcaveCube’s method does not take an
input parameter, but the shape of the resulting polygons are based on the Delaunay
triangulation. This leads to more edges and therefore can produce more complex shapes
as seen in the middle polygon in Figure 3.10. For this project it is more desirable to be
in control of the smoothness than not having to specify an input parameter.

The extension of ConcaveCube’s concave hull algorithm that allows non-Jordan boundaries
is preferred over the handling of seat rows in the other approach. When a curve of seats
is represented by a polygon in Duckham’s concave hull algorithm the intrinsic shape gets
lost. This can be observed in the seat on both sides of the seating plan in Figure 3.10

Duckham’s algorithm processes each point set individually and therefore overlaps of
polygons can appear. This cannot happen with ConcaveCube’s method because the

15



3. Seating Plan Image Creation

polygons are constructed simultaneoulys using the Delaunay Triangulation that does not
have edge intersections and therefore no overlaps can appear.

For this project Duckham’s approach is more preferred because of the ability to control
the smoothness.

Figure 3.9: Comparison between Duckham’s (left) and ConcaveCube’s (right) concave
hull algorithm

Figure 3.10: Comparison between Duckham’s (left) and ConcaveCube’s (right) concave
hull algorithm

16



3.4. Computing polygons that represent seat groups and the stage

Figure 3.11: Comparison between Duckham’s (left) and ConcaveCube’s (right) concave
hull algorithm

Figure 3.12: Comparison between Duckham’s (left) and ConcaveCube’s (right) concave
hull algorithm

3.4.4 Calculating the stage’s position

The position of the stage can not be derived from the data itself. By experience it is
either below or above the seats. The user decides at the beginning to position the stage
at the top or bottom. It will be centered horizontally. The calculation of the position of
the stage can be seen from equations (3.3)–(3.6). A visual explanation for the variables
can be found in Figure 3.13.

17



3. Seating Plan Image Creation

widthimage = xmax + xmin + 2xoffset (3.3)

xstage = widthimage − widthstage
2 (3.4)

ystage(top) = ymin + yoffset − gap (3.5)
ystage(bottom) = ymax + yoffset + gap (3.6)

Figure 3.13: The created seat group polygons and the stage form the final image. The
blue square represents the offset. The green square shows the minimum and maximum
positions of seats and the orange square is the minimum and maximum including the
stage.

18



CHAPTER 4
Implementation

The seating plan image generation is implemented on an existing system containing
a client and server. The client is a website built with JavaScript and HTML and the
server runs a Java Application. They communicate via a REST API. The user input,
interactions and displaying of results is done on the client. The core algorithm for the
seating plan image generation is implemented as a component on the server. Figure 4.1
gives an overview of the components and their relations.

Figure 4.1: The component diagram showing the interaction between the client and
server

19



4. Implementation

4.1 User interface

In Figure 4.2 the user interface for the performance search and parameter input can be
seen. The user can search an event using its name and other filter options. The left table
displays all the events found. Clicking on an event will bring up all its performances
on the right table. The user selects a performance for which the seating plan image
should be generated from by clicking on it. Below the tables the input parameters for
the algorithm are defined. They include the distance threshold Eps for clustering, the
smoothness l for the polygon creation, x- and y-offset, and the options for clustering
using the sector and box information. The input is predefined with values that were
found to work for many seating plans. After all the input has been set, clicking the
generate button will initiate the image generation.

In Figure 4.3 the generated seating plan image is displayed on the left. The stage can
be repositioned using drag-and-drop. Dragging the polygon will move the whole stage
including the font. The font can also be dragged alone. On the right side the input for
manipulating the stage can be found. This includes sliders for the width, height, font
size and stroke width. Additionally the dots representing the seats can be hidden, since
they will be removed for the final image used in the app. Also the display of guides
can be toggled which show the offset, center, maximum and minimum horizontally and
vertically. At the bottom of Figure 4.3 the buttons are located for downloading, saving,
and uploading the image.

Figure 4.2: The user interface to search for a performance and input parameters that are
used to generate the seating plan image.

20



4.2. Seat data

Figure 4.3: The user interface showing the generated seating plan image. On the right
side are the controls to manipulate the stage. Additionally the stage can be repositioned
via drag-and-drop.

4.2 Seat data
The retrieval of the seat data for a performance is done on a dedicated component outside
the scope of this project. This component fetches the data from external sources and
converts it to Java Objects.

4.3 Clustering
The clustering is done with the Java library Commons Math: The Apache Commons
Mathematics Library [Apa]. The library offers among others an implementation of the
DBSCAN algorithm which is used for this project. The algorithm is used by providing a
wrapper class for a seat which implements the Clusterable interface and using a custom
distance measurement class.

4.4 Polygon computation
The first approach for computing the polygons which is based on Duckham’s algo-
rithm [DKWG08] was implemented using Ophensphere Project’s [Gro12] concave hull
implementation. The second approach based on ConcaveCubes’s algorithm[LCB+18] was
implemented using a Java Delaunay Triangulation library [Die18].

21





CHAPTER 5
Results and Discussion

It is found that the automated seating plan generation can produce sufficient results
to replace the manual creation process. Many venues have a simple seat layout with
evenly spread out seats which can easily be clustered using only the position. The
box information for clustering is needed for seating plans like in Figure 5.1. The seats
that form a horseshoe shape belong to several boxes. The evaluation of the polygon
computation showed that smooth polygons are desired which can be achieved with the
approach using Duckham’s concave hull algorithm[DKWG08]. The next sections will
look into how different parameter values will effect the result.

5.1 Tuning the distance threshold Eps for clustering

When clustering using the seat’s position The distance threshold effectively controls the
size of the seat groups in terms of the number of seats. It determines the maximum
distance between two seats to be considered neighbours, hence falling into the same
cluster. Smaller values result in more smaller seat groups whereas greater values lead
to fewer but bigger seat groups. Figure 5.2 shows seating plan images generated with
different values for the distance threshold Eps for Equation (3.1). An Eps value of 30 to
45 had been found suitable for all tested seating plans.

5.2 Tuning smoothness parameter of polygons

The smoothness controls the coarseness of the polygon shape in Duckham’s concave hull
algorithm[DKWG08]. Small values result in more complex shapes than greater values.
The value determines the maximum length of the polygon’s longest edge. Figure 5.3
shows seating plan images generated with various smoothness values. For most seating
plan images a smoothness value of 100 had been found suitable, because the seating plans

23



5. Results and Discussion

are of similar dimension. For the testing data a minimum value of 30 is needed to get a
reasonable image. Values greater than 100 did not lead to significant changes.

5.3 Comparison to manually created images
Comparing the existing seating plan images that had been created by hand to the
generated images show how similar-looking results can be achieved. Figure 5.4 compares
the seating plan of Theater in der Josefstadt.

The process of creating the seating plan images manually is very time consuming. For
one seating plan image to be finished takes about 20 min. In comparison the average
time of generating the image takes about 3 min including testing different parameters
and modifying the stage. The person in charge that creates the seating plan images
tested the final product and said: "It already saves me time - 5 minutes instead of an
hour for the Schauspielhaus".

5.4 Limitations
Figures 5.5 to 5.10 show several generated seating plan images of different complexity. All
results use Duckham’s concave hull algorithm[DKWG08] for the polygon computation.
When seats are not evenly spread out like in Figure 5.6(a) it is difficult to determine the
distance threshold Eps. In this case having a larger value would merge the 4 lines in the
lower left corner, but would also merge all other seat groups. Figure 5.8(a) indicates
the problem of overlapping seat groups. The central 3 polygons are too nearby so their
borders touch. The simple solution here would be to reduce the border thickness, but
the algorithm does not detect this on its own. Another issue is that the smoothness
setting affects all polygons the same. It is not possible to have some polygons with a
more complex border than others. Also the implementation only allows modification of
the stage. If anything in the image should be modified it must be done with an external
tool.

24



5.4. Limitations

Figure 5.1: Generated seating plan image of the venue Ronacher.

25



5. Results and Discussion

((a)) 60 ((b)) 30

((c)) 5

Figure 5.2: Using different values for the distance threshold. It determines the maximum
distance between two seats to call them neighbours and therefore being able to be
clustered together. The smoothness is set to 100.

26



5.4. Limitations

((a)) 300 ((b)) 30

((c)) 5

Figure 5.3: Using different values for the polygon smoothness. It determines the maximum
length of the longest edge. The clustering is done via position only and a distance threshold
of 45.

27



5. Results and Discussion

((a)) Hand drawn

((b)) Generated

Figure 5.4: The comparison between the manually created and generated seating image
depicts how similar results can be produced.

28



5.4. Limitations

((a)) Akademietheater

((b)) Schloss Esterhazy, Empiresaal

((c)) Schloss Esterhazy, Haydnsaal

Figure 5.5: Generated seating plan images.

29



5. Results and Discussion

((a)) Congress Innsbruck

((b)) Festspielhaus Bregenz ((c)) Haus der Musik Innsbruck

Figure 5.6: Generated seating plan images.

30



5.4. Limitations

((a)) Renaissancetheater

((b)) Kammeroper

((c)) Schloss Tabor

Figure 5.7: Generated seating plan images. 31



5. Results and Discussion

((a)) Raimund Theater

((b)) Kammerspiele der Josefstadt

((c)) Tiroler Landeskonservatorium

Figure 5.8: Generated seating plan images.

32



5.4. Limitations

((a)) Theater an der Wien

((b)) Schloss Kobersdorf
((c)) Sträußelsäle

Figure 5.9: Generated seating plan images.
33



5. Results and Discussion

((a)) Tiroler Landestheater

((b)) Theater im Zentrum

Figure 5.10: Generated seating plan images.

34



CHAPTER 6
Conclusion and Future Work

The developed product can automatically generate seating plan images out of seat
information like in Figure 5.1. The goal of replacing the manual creation of these images
with an automated process that manages to produce similar results is achieved. The seat
groups are generated through DBSCAN clustering mainly with the position information.
It was found that an average threshold can be used for most seating plans. Two
approaches for computing the polygons that represent seat groups have been compared.
ConcaveCube’s concave hull algorithm[LCB+18] does not need an input parameter and
can produce non-overlapping polygons. Duckham’s concave hull algorithm[DKWG08]
uses an input parameter that allows controlling the smoothness of the polygons which
has been preferred over the other approach. The finished product can handle most of the
seating plans and is sufficient enough to be used in the real work environment. The time
spent on creating seating plan images could be reduced significantly. Future work would
be to eliminate the limitations mentioned in section 5.4.

During the development the question arose if it would be possible to detect if a created
seating plan still matches a seating layout. Sometimes it is the case that a seat layout
change for an event is undetected and the seating plan image does not fit anymore. For
example new seats have been added which are not covered by the polygons anymore. An
algorithm could detect such cases and automatically generate a new seating plan image
for the event.

Another improvement would be if the user could control the clustering by placing walls
which would separate seat groups. For this the modified seating plan image needs to be
used as an input for the new image generation.

35





List of Figures

1.1 On the left side is the app’s interactive seating plan where available seats are
drawn on top of the manually created seating plan image. On the right side
the corresponding generated seating plan image can be seen. . . . . . . . 3

3.1 Flowchart of the process for creating a seating plan image. . . . . . . . . . 8
3.2 Subfigure 3.2(b) shows the seat’s actual value. Subfigures 3.2(c), 3.2(d) and

3.2(b) show the values mapped to sequential numbers. The color shows seats
with the same value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Using seatNumber for clustering . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Using row for clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Using ticketCategoryId for clustering . . . . . . . . . . . . . . . . . . . . . 12
3.6 Clustering result into seat groups using the seats’ position. The number

correspond to the seat group’s id. . . . . . . . . . . . . . . . . . . . . . . . 13
3.7 A visualization of a combinatorial map with the arrows representing the darts,

from [DKWG08] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.8 The Delaunay Triangulation of ConcaveCube’s concave hull algorithm. Edges

connecting different clusters are shown in red, inner edges are blue and
boundary edges are black. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.9 Comparison between Duckham’s (left) and ConcaveCube’s (right) concave
hull algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.10 Comparison between Duckham’s (left) and ConcaveCube’s (right) concave
hull algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.11 Comparison between Duckham’s (left) and ConcaveCube’s (right) concave
hull algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.12 Comparison between Duckham’s (left) and ConcaveCube’s (right) concave
hull algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.13 The created seat group polygons and the stage form the final image. The
blue square represents the offset. The green square shows the minimum
and maximum positions of seats and the orange square is the minimum and
maximum including the stage. . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 The component diagram showing the interaction between the client and server 19

37



4.2 The user interface to search for a performance and input parameters that are
used to generate the seating plan image. . . . . . . . . . . . . . . . . . . . 20

4.3 The user interface showing the generated seating plan image. On the right
side are the controls to manipulate the stage. Additionally the stage can be
repositioned via drag-and-drop. . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Generated seating plan image of the venue Ronacher. . . . . . . . . . . . 25
5.2 Using different values for the distance threshold. It determines the maximum

distance between two seats to call them neighbours and therefore being able
to be clustered together. The smoothness is set to 100. . . . . . . . . . . . 26

5.3 Using different values for the polygon smoothness. It determines the maximum
length of the longest edge. The clustering is done via position only and a
distance threshold of 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 The comparison between the manually created and generated seating image
depicts how similar results can be produced. . . . . . . . . . . . . . . . . . 28

5.5 Generated seating plan images. . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6 Generated seating plan images. . . . . . . . . . . . . . . . . . . . . . . . . 30
5.7 Generated seating plan images. . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.8 Generated seating plan images. . . . . . . . . . . . . . . . . . . . . . . . . 32
5.9 Generated seating plan images. . . . . . . . . . . . . . . . . . . . . . . . . 33
5.10 Generated seating plan images. . . . . . . . . . . . . . . . . . . . . . . . . 34

38



Bibliography

[Apa] Commons Math: The apache commons mathematics library. http:
//commons.apache.org/proper/commons-math/. Acessed: 2018-09-
07.

[Die18] Johannes Diemke. A 2d delaunay triangulation library for java. https:
//github.com/jdiemke/delaunay-triangulator, 2018. Acessed:
2018-09-07.

[DKWG08] Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. Efficient
generation of simple polygons for characterizing the shape of a set of points
in the plane. Pattern recognition, 41(10):3224–3236, 2008.

[EKS+96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996.

[Gro12] Eric Grosso. Opensphere concave hull. https://github.com/atolcd/
pentaho-gis-plugins/blob/master/concave-hull/src/main/
java/org/opensphere/geometry/algorithm/ConcaveHull.
java, 2012. Acessed: 2018-09-07.

[Jar73] Ray A Jarvis. On the identification of the convex hull of a finite set of points
in the plane. Information processing letters, 2:18–21, 1973.

[Kim14] Stanley H Kim. Systems and methods for generating dynamic seating charts,
July 10 2014. US Patent App. 14/148,354.

[LCB+18] Mingzhao Li, Farhana Choudhury, Zhifeng Bao, Hanan Samet, and Timos
Sellis. Concavecubes: Supporting cluster-based geographical visualization in
large data scale. In Computer Graphics Forum, volume 37, pages 217–228.
Wiley Online Library, 2018.

[M+67] James MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1, pages 281–297. Oakland,
CA, USA, 1967.

39

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
https://github.com/jdiemke/delaunay-triangulator
https://github.com/jdiemke/delaunay-triangulator
https://github.com/atolcd/pentaho-gis-plugins/blob/master/concave-hull/src/main/java/org/opensphere/geometry/algorithm/ConcaveHull.java
https://github.com/atolcd/pentaho-gis-plugins/blob/master/concave-hull/src/main/java/org/opensphere/geometry/algorithm/ConcaveHull.java
https://github.com/atolcd/pentaho-gis-plugins/blob/master/concave-hull/src/main/java/org/opensphere/geometry/algorithm/ConcaveHull.java
https://github.com/atolcd/pentaho-gis-plugins/blob/master/concave-hull/src/main/java/org/opensphere/geometry/algorithm/ConcaveHull.java


[MC12] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering:
an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 2(1):86–97, 2012.

[MS07] Adriano Moreira and Maribel Yasmina Santos. Concave hull: A k-nearest
neighbours approach for the computation of the region occupied by a set of
points. 2007.

[seaa] SeatAdvisor the smart ticketing solution. https://www.seatadvisor.
com/online-ticketing/. Accessed: 2018-05-08.

[seab] seatsio.io. https://www.seats.io/demos/designer. Accessed: 2018-
05-08.

[soc] socialtables. https://www.socialtables.com/. Accessed: 2018-05-08.

[tic] Ticket gretchen. https://ticketgretchen.com/. Accessed: 2018-05-
08.

[XW09] Rui Xu and Donald C Wunsch. Clustering. hoboken, 2009.

40

https://www.seatadvisor.com/online-ticketing/
https://www.seatadvisor.com/online-ticketing/
https://www.seats.io/demos/designer
https://www.socialtables.com/
https://ticketgretchen.com/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Clustering
	Polygon computation

	Seating Plan Image Creation
	User input
	Seat data
	Creating seat groups with clustering
	Computing polygons that represent seat groups and the stage

	Implementation
	User interface
	Seat data
	Clustering
	Polygon computation

	Results and Discussion
	Tuning the distance threshold Eps for clustering
	Tuning smoothness parameter of polygons
	Comparison to manually created images
	Limitations

	Conclusion and Future Work
	List of Figures
	Bibliography

